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Complex numbers in classical physics

Often convenient to use complex numbers in
classical physics, especially in description of
wave motion or vibration
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Can take real or imaginary part as physical solution.
Complex numbers are a mathematical convenience.



Classical 1D wave equation g2 1 a2y ¥ (x.t)
e.g. waves on a string: ox: v

) |
Y(x,t) = wave displacement W

v = wave velocity

Can we use this to describe matter waves in free space?

Try solution ‘{1()(,1;) _ gill-at)
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But this isn’t correct! For free particles we know that E = 2—
m



Seem to need an equation that
involves the first derivative in Try o— =
time, but the second derivative ot OX>
In space

oY oY

Y(x,t) Is "wave function" associated with matter wave

-
As before try solution 'V (X,t) _ pllea)

So equation for matter waves in free spaceis ;O _ n oY
(free particle Schrodinger equation) ot 2m ox°




An equation for matter waves (3)

What about particles that are not free?

_ 2 A2
Substitute ¥ (x,t) = '™ into free particle equation iha—qj = —;Ll— %Ej
m ox
nk’
gives ha)w(x,t): l//(X,t)
2m
2
Has form (Total Energy)*(wavefunction) = (KE)*(wavefunction) |E = 2p_
m
L : p°
For particle in a potential V(x,t) E = P +V (X,t)  Total energy = KE + PE
m

Suggests modification to Schrédinger equation:

(Total Energy)*(wavefunction) = (KE+PE)*(wavefunction)
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Schrédinger Time-dependent Schrddinger equation



The Schrodinger equation: notes

® This was a plausibility argument, not a derivation. We believe the
Schrddinger equation not because of this argument, but because its predictions
agree with experiment.

® There are limits to its validity. In this form it applies only to a single, non-
relativistic particle (i.e. one with non-zero rest mass and speed much less than c)

® The Schrodinger equation is a partial differential equation in x and t (like
classical wave equation). Unlike the classical wave equation it is first order in
time.

® The Schrddinger equation contains the complex number i. Therefore its
solutions are essentially complex (unlike classical waves, where the use of
complex numbers is just a mathematical convenience).

® Note the +ve sign of i in the Schrodinger equation. This came from our
looking for plane waves of the form W [] e 7'

We could equally well have looked for solutions of the form Wy [] g+t

Then we would have got a —ve sign.

h? 0*°Y

. oF
h 2
ot 2m oX

This is a matter of convention (now very well established).

+V (X, 1)V




The Hamiltonian operator

Time-dependent i oY he 0°Y

Schrddinger equation ot % o2 +V(X,t)\P

Can think of the RHS of the Schrodinger equation as a
differential operator that represents the energy of the particle.

This operator is called the Hamiltonian of the T A
particle, and usually given the symbol H ———+V(x,1) |['¥Y=HY
2m dx

Hence there is an alternative (shorthand) | | |
form for the time-dependent Schrodinger Kinetic Potential
equation: energy energy

OV R operator operator

h—=HY

ot

Hamiltonian is a linear differential operator.
Schrddinger equation is a linear homogeneous partial differential equation



Interpretation of the wave function

¥'is a complex quantity, so how can it correspond to real
physical measurements on a system?

Remember photons: number of photons per unit volume is
proportional to the electromagnetic energy per unit volume,
hence to square of electromagnetic field strength.

Postulate (Born interpretation): probability of finding particle in a small
length 6x at position x and time t is equal to

¥ (x, 1] 5x P =¥y

Note: |¥(x,t)|? is the probability per unit length. It
Is real as required for a probability distribution.

Total probability of finding particle P2 1 2(
between positions a and b is /\ '

b b
YW Sx—5m [ [P0 dx
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Example

Suppose that at some instant of time a particle’s wavefunction at t=0 is

W(x 0)=2X
\AU) =<K

What is:;

(a) The probability of finding
the particle between x=1.0
and x=1.0017?

(b) The probability per unit
length of finding the
particle at x=17

(c) The probability of finding
the particle between x=0 and
x=0.5?




DOUBLE-SLIT EXPERIMENT REVISITED

y
Incoming coherent | Detecting
beam of particles screen

(or light)

A
v

Schrodinger equation is linear: solution with both slits open is 'V =¥, + ¥,

Observation is nonlinear |\P|2 = |\Pl|2 + |\I’2|2 + LI”:\Pz -+ \Psz
“ o

Interference term

Usual “particle™part ;o fringes



Normalization

Total probability for particle to be somewhere should always be one

I |\IJ(x,t)|2 dx =1 Normalization condition

A wavefunction which obeys this
condition is said to be normalized

Suppose we have a solution to the
Schrddinger equation that is not
normalized. Then we can

R 2
Calculatethe normalization integral _—— N = j|T(X’t)| dx

*Re-scale the wave function as

(This works because any solution tothe\~ v (Xt) > —=w(xt)
SE multiplied by a constant remains a v N

solution, because the SE is LINEAR o _
and HOMOGENEOUS) New wavefunction is normalized to 1




Normalizing a wavefunction - example

Particle with un-normalized wavefunction W (X,t)=a’—-x°, —-a<x<a

at some instant of time t ¥(x,1) =0, |X| > a




If the Born interpretation of the wavefunction is correct then the normalization
must be independent of time (and can always be chosen to be 1 by

integral m

Conservation of probability

normalizing the wavefunction)

Total

We can pr
using the ¢

consistenc

j |\P(x,t)|2 dx = constant

probability for particle to be somewhere should ALWAYS be one

ove that this is true for physically relevant wavefunctions
Schrodinger equation. This is a very important check on the

y of the Born interpretation.

ot

2 2
A SRVIORIN

2m OX

)

f W (x, t)|2 dx = constant

—00




Boundary conditions for the wavefunction

The wavefunction must: Examples of unsuitable wavefunctions

1. Be a continuous and single-valued w(X)
function of both x and t (in order that the \
probability density is uniquely defined)

y (X)

Not single valued
/\/
/\/
X

2. Have a continuous first derivative Discontinuous
(except at points where the potential is infinite) —

X
\W(X)

3. Have a finite normalization integral Gradient discontinuous
(so we can define a normalized probability) _/

X



Time-independent Schrodinger equation

.oV B oY
Suppose potential is independent of time ~ iffi— = — —+V (X)¥
ot 2m oX
V (x,t)=V(x) R | '
LHS involves only RHS involves only variation of ¥

variation of ¥ with t | | with x (i.e. Hamiltonian operator
does not depend on t)

Look for a separated solution Y(x,t) =w(X)T(t)

Substitute: _h_a_[w(X)T(t)]Jrv(x)w(x)T(t)=ih§[t//(X)T(t)]

2m ox*
2 v eTO]-TM Y
a2 dx?
N.B. Total not partial
G dZW _ dT derivatives now
——T +V(X)uT =1hy —
2m  dx’ () Yt




ne_dy . dT
T V()T =iky —
om dx’ BT =iny dt
Divide by wT
2 2
A 1d ‘2”+V(x)=ih1d—T
2m y dx T dt

LHS depends only on X, RHS depends only on t.
True for all x and t so both sides must be a constant, A (A = separation constant)

This gives Ihld—T =A
T dt
2 2
_h1d 2V () = A
2m v dx

So we have two equations, one for the time dependence of the wavefunction
and one for the space dependence. \WWe also have to determine the separation constant.




SOLVING THE TIME EQUATION

1dT

T dt

l.
E:(%)T
|

T(t) _ ae—iAt/h

1dT
T dt

_B1dy

my e +V(x)=A

. —~iEt/%
This is like a wave & with = A/h.So A=E. || (t) = ae€

 This only tells us that T(t) depends on the energy E.

It doesn’t tell us what the energy actually is. For that we have to solve the space part.

 T(t) does not depend explicitly on the potential V(x). But there is an implicit dependence

because the potential affects the possible values for the energy E.




Time-independent Schrodinger equation

With A = E, the space equation becomes:

he doy

Wy =Ep| o |Ay=Ey|

2m dx?

This is the time-independent Schrédinger equation

Solution to full TDSE is LIJ(X’ t) _ W(X)T (t) _ W(X)e—iEt/h

Even though the potential is independent of time the wavefunction still oscillates in time

2 * +i i
But probability P(X,t):‘[/j(x’t)‘ =y (X)e Et/hw(x)e Et/7
distribution is static . )
=y (N (x) =y ()|

For this reason a solution of the TISE is known as a stationary state

Solving the space equation = rest of course!



h doy 3
Notes o EHV (y =Ey

In one space dimension, the time-independent Schrodinger
equation is an ordinary differential equation (not a partial differential

equation)

The time-independent Schrodinger equation is an
eigenvalue equation for the Hamiltonian operator:

Operator x function = number x function
(Compare Matrix x vector = number x vector)

ﬁW:Ew‘

We will consistently use uppercase W(x,t) for the full wavefunction
(TDSE), and lowercase y(x) for the spatial part of the wavefunction
when time and space have been separated (TISE)




SE In three dimensions

To apply the Schrodinger equation in the real 3D) | Ay . -
world we keep the same basic structure: IRE =HY ‘ Hy = Ey ‘
BUT
Wavefunction and potential energy are v (x) >y (r)=w(xy.2)
now functions of three spatial coordinates: V (x) SV (r) =V (XY, z)
o _ p?  p* Pt p,+P;
Kinetic energy now involves three om — om om
components of momentum
h* 0° o, w0 o8 0
o na oV = PP,
2m OX 2m 2m| ox° oy® oz
Interpretation of wavefunction: d3r w(r,t)‘z ‘W(r,t)‘z

probability of finding particle in a probability density at r
volume element centred on r I.e. probability per unit volume




SE In three dimensions

So 3D Hamiltonian is

n W,
H(r):—ﬂv +V (r)

Time-dependent Schrddinger equation is

17

O (r,t) %

ot

= _%VZ‘P(r,t)jtv (r,t)¥(r,t)

Time-independent Schrddinger equation is

hZ

2m

Vi (r)+V (r)y(r)=Ew(r)

This is a linear homogeneous partial differential equation




Puzzle

The requirement that a plane wave
“P(X t) _ ei(kx—a)t)

plus the energy-momentum relationship for free-non-relativistic particles
2

E-P
2m

led us to the free-particle Schrédinger equation.

Can you use a similar argument to suggest an equation for free relativistic
particles, with energy-momentum relationship:

2 2.2 2.4
E°=p°c"+m,cC



SUMMARY

Time-dependent Schrédinger equation h° O’ oY

V(Xt)¥ =1h—
+V (x,1) | ~

- 2m o2

Probability interpretation and normalization

P(x,t)dx =¥ (xt) dx="¥"(x,t)P(xt)dx

de P(x,t)= +jiodx“11(x,t)‘2 =1

Time-independent Schrodinger equation

n° d* _
o dxgzy +V (X)w(X) = Ew(X) \‘P(X, t) _ l//(X)T (t) _ W(X)e_lEt/h

Conditions on wavefunction
single-valued, continuous, normalizable,

continuous first derivative l//(X,'[) —U (X)T (t) ~U (X)e—iEt/h







