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Complex numbers in classical physics

i tez A 

Often convenient to use complex numbers in 

classical physics, especially in description of 

wave motion or vibration

Can take real or imaginary part as physical solution.  

Complex numbers are a mathematical convenience.
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An equation for matter waves: 

the time-dependent Schrödinger equation
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wave velocityv 

Classical 1D wave equation

e.g.  waves on a string:

Can we use this to describe matter waves in free space?
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But this isn’t correct! For free particles we know that
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An equation for matter waves (2)
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Seem to need an equation that 

involves the first derivative in 

time, but the second derivative

in space
( , ) is "wave function" associated with matter wavex t
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So equation for matter waves in free space is

(free particle Schrödinger equation)



An equation for matter waves (3)
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For particle in a potential V(x,t)

Suggests modification to Schrödinger equation:

Time-dependent Schrödinger equation

Total energy = KE + PE

Schrödinger

What about particles that are not free?
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Has form (Total Energy)*(wavefunction) = (KE)*(wavefunction)
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(Total Energy)*(wavefunction) = (KE+PE)*(wavefunction)

gives



The Schrödinger equation: notes
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• This was a plausibility argument, not a derivation.  We believe the 

Schrödinger equation not because of this argument, but because its predictions 

agree with experiment.

• There are limits to its validity.  In this form it applies only to a single, non-

relativistic particle (i.e. one with non-zero rest mass and speed much less than c)

• The Schrödinger equation is a partial differential equation in x and t (like 

classical wave equation). Unlike the classical wave equation it is first order in 

time.

• The Schrödinger equation contains the complex number i.  Therefore its 

solutions are essentially complex (unlike classical waves, where the use of 

complex numbers is just a mathematical convenience).

• Note the +ve sign of i in the Schrödinger equation. This came from our 

looking for plane waves of the form

We could equally well have looked for solutions of the form

Then we would have got a –ve sign.

This is a matter of convention (now very well established).
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The Hamiltonian operator
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Can think of the RHS of the Schrödinger equation as a 

differential operator that represents the energy of the particle.

Hence there is an alternative (shorthand) 

form for the time-dependent Schrödinger

equation:

This operator is called the Hamiltonian of the 

particle, and usually given the symbol Ĥ
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Kinetic 

energy 

operator

Potential 

energy 

operator

Hamiltonian is a linear differential operator.

Schrödinger equation is a linear homogeneous partial differential equation

Time-dependent 

Schrödinger equation



Interpretation of the wave function
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Ψ is a complex quantity, so how can it correspond to real 

physical measurements on a system?

Remember photons: number of photons per unit volume is 

proportional to the electromagnetic energy per unit volume, 

hence to square of electromagnetic field strength.

Postulate (Born interpretation): probability of finding particle in a small 

length δx at position x and time t is equal to

Note: |Ψ(x,t)|2 is the probability per unit length. It 

is real as required for a probability distribution.

Total probability of finding particle 

between positions a and b is

a b

|Ψ|2

x

δx

Born



Example

Suppose that at some instant of time a particle’s wavefunction at t=0 is

( ,0) 2x x 

What is:

(a) The probability of finding 

the particle between x=1.0 

and x=1.001?

(b) The probability per unit 

length of finding the 

particle at x=1?

(c) The probability of finding 

the particle between x=0 and 

x=0.5?



DOUBLE-SLIT  EXPERIMENT REVISITED

Detecting 

screen

Incoming coherent 

beam of particles 

(or light)

sind 

D

θ

y

1

2

Schrödinger equation is linear: solution with both slits open is
1 2   

Observation is nonlinear
1 2

2 2 2 * *

1 2 2 1        

Usual “particle” part
Interference term

gives fringes



Normalization

Total probability for particle to be somewhere should always be one

Suppose we have a solution to the 

Schrödinger equation that is not 

normalized.  Then we can

•Calculate the normalization integral

•Re-scale the wave function as

(This works because any solution to the 

SE multiplied by a constant remains a 

solution, because the SE is LINEAR 

and HOMOGENEOUS)

Normalization condition2
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New wavefunction is normalized to 1

A wavefunction which obeys this

condition is said to be normalized
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( , ) 0,
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Particle with un-normalized wavefunction

at some instant of time t

Normalizing a wavefunction - example



Conservation of probability

Total probability for particle to be somewhere should ALWAYS be one
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If the Born interpretation of the wavefunction is correct then the normalization

integral must be independent of time (and can always be chosen to be 1 by

normalizing the wavefunction)

We can prove that this is true for physically relevant wavefunctions

using the Schrödinger equation. This is a very important check on the

consistency of the Born interpretation.
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Boundary conditions for the wavefunction

The wavefunction must:

1. Be a continuous and single-valued 

function of both x and t (in order that the 

probability density is uniquely defined)

Examples of unsuitable wavefunctions

Not single valued

Discontinuous

Gradient discontinuous

x

( )x

( )x

x

( )x

x

2. Have a continuous first derivative

(except at points where the potential is infinite)

3. Have a finite normalization integral

(so we can define a normalized probability)



Time-independent Schrödinger equation

Suppose potential is independent of time
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LHS involves only 

variation of Ψ with t

RHS involves only variation of Ψ

with x (i.e. Hamiltonian operator 

does not depend on t)

Look for a separated solution ( , ) ( ) ( )x t x T t 

Substitute:
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N.B. Total not partial

derivatives now

etc
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Divide by ψT

LHS depends only on x, RHS depends only on t.

True for all x and t so both sides must be a constant, A  (A = separation constant) 
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So we have two equations, one for the time dependence of the wavefunction

and one for the space dependence. We also have to determine the separation constant.

This gives
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SOLVING THE TIME EQUATION

• This only tells us that T(t) depends on the energy E. 

It doesn’t tell us what the energy actually is. For that we have to solve the space part.

• T(t) does not depend explicitly on the potential V(x). But there is an implicit dependence

because the potential affects the possible values for the energy E.
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With A = E, the space equation becomes:

This is the time-independent Schrödinger equation

Ĥ E 

Solving the space equation = rest of course!

Time-independent Schrödinger equation

or

But probability  

distribution is static

   
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/( , ) ( ) ( ) ( )  iEtx t x T t x e    Solution to full TDSE is

Even though the potential is independent of time the wavefunction still oscillates in time

For this reason a solution of the TISE is known as a stationary state



Notes

• In one space dimension, the time-independent Schrödinger 
equation is an ordinary differential equation (not a partial differential 
equation)

• The time-independent Schrödinger equation is an

eigenvalue equation for the Hamiltonian operator:

Operator × function = number × function

(Compare   Matrix × vector = number × vector)

• We will consistently use uppercase Ψ(x,t) for the full wavefunction 
(TDSE), and lowercase ψ(x) for the spatial part of the wavefunction 
when time and space have been separated (TISE)
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SE in three dimensions

Ĥ E 
To apply the Schrödinger equation in the real (3D) 

world we keep the same basic structure: ˆi H
t


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BUT

Wavefunction and potential energy are 

now functions of three spatial coordinates:

Kinetic energy now involves three

components of momentum

Interpretation of wavefunction: 
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probability of finding particle in a 

volume element centred on r

 
2

 ,  t r

probability density at r

i.e. probability per unit volume



SE in three dimensions
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So 3D Hamiltonian is
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Time-independent Schrödinger equation is

Time-dependent Schrödinger equation is

This is a linear homogeneous partial differential equation



Puzzle

( )( , ) ei kx tx t  

2 2 2 2 4

0E p c m c 

The requirement that a plane wave

plus the energy-momentum relationship for free-non-relativistic particles

led us to the free-particle Schrödinger equation.

Can you use a similar argument to suggest an equation for free relativistic

particles, with energy-momentum relationship: 
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SUMMARY

Time-dependent Schrödinger equation
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Probability interpretation and normalization

Time-independent Schrödinger equation

2 2

2
( ) ( ) ( )

2

d
V x x E x

m dx


   
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  /, ( ) ( ) ( )  iEtx t x T t x e    

Conditions on wavefunction

single-valued, continuous, normalizable,

continuous first derivative
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